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It has been shown in a previous paper that there is a real-valued transformation from the
general N-degree-of-freedom second order system to a second order system characterized
by diagonal matrices. An immediate extension of this fact is that for any second order
system, there is a set of real-valued transformations (the structure-preserving transforma-
tions) which transform this system to a different second order system having identical
characteristic behaviour. There are several possible reasons why it may be very useful to
achieve a particular structure in the transformed system. It is obvious that a diagonal
structure is extremely useful and a method has been devised for determining the
diagonalizing transformation from the solution of the usual (complex) eigenvalue–
eigenvector problem.

This paper begins by outlining the usefulness of some other structures. Then it defines a
class of elementary structure-preserving co-ordinate transformations that transform from
one N-degree-of-freedom second order system to another. The term elementary is applied
because any one of these transformations is the minimum-rank modification of the identity
transformation. The changes occurring in the system matrices as a result of the application
of one such elementary transformation transpire to be very simple in form, they are low
rank, and they can be computed very efficiently.

This paper provides the fundamental tools to enable the design of structure-preserving
co-ordinate transformations which transform a second order system originally character-
ized by three general matrices in stages into a mathematically similar second order system
characterized by three diagonal matrices. The procedure by which the individual
elementary transformations are obtained is still under development and it is not discussed
in this paper. However, an illustration is given of a five-degree-of-freedom self-adjoint
system being transformed into tridiagonal form.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In the analysis of the vibrations of undamped or classically damped structures, the matter
of executing co-ordinate transformations is well established and understood. In every such
case, there is one co-ordinate set}the principal or modal co-ordinates}under which the
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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system matrices become diagonal. For generally damped structures, it is commonly
accepted that there is no co-ordinate transformation which can simultaneously diagonalize
the three system matrices. This resignation is wrong. In fact there is a co-ordinate
transformation which simultaneously diagonalizes the three system matrices but this
transformation is more general than the transformation used for first order or classically
damped systems [1]. In the case of classically damped structures, the ability to find a
diagonalizing transformation is only one of a large set of capabilities made available to the
vibrations engineer through the existence of co-ordinate transformations. This paper aims
to provide the basis for the extension of this set of capabilities to systems having general
viscous damping through the provision of elementary structure-preserving transforma-
tions for such systems.

The second order system of interest is that described by matrices K, D and M and
having q as its vector of displacement co-ordinates and Q as its vector of forces,

KqþD’qqþM.qq ¼ Q: ð1Þ

Although it is common that the system matrices are symmetric, this is not always the
case and therefore it is possible that different transformations are applied to the left- and
right-hand sides of the system. These will be distinguished using the subscripts L and R

respectively.
In this paper, all of the transformations applied will all be square in the sense that the

transformed system matrices will have the same dimensions as the matrices of the original
system. There is a major role for model-reducing transformations and this paper prepares
much relevant ground for such transformations insofar as every model-reducing
transformation can be understood to be a square transformation followed by the simple
discarding of some system degrees of freedom. Any further treatment of elementary
model-reducing transformations is deferred to another paper.

Any eight real (N�N) matrices {WL, XL, YL, ZL, WR, XR, YR, ZR} define a general
co-ordinate transformation for a second order system {K, D, M} [1] but this
transformation is structure preserving if and only if

WL XL

YL ZL

" #T
0 K

K D

" #
WR XR

YR ZR

" #
¼

0 K0

K0 D0

" #
; ð2Þ

WL XL

YL ZL

" #T
K 0

0 �M

" #
WR XR

YR ZR

" #
¼

K0 0

0 �M0

" #
; ð3Þ

WL XL

YL ZL

" #T
D M

M 0

" #
WR XR

YR ZR

" #
¼

D0 M0

M0 0

" #
; ð4Þ

where {K0, D0, M0} are the system matrices of a new second order system. The identity
transformation (WL ¼ I ¼ ZL;XL ¼ 0 ¼ YL;WR ¼ I ¼ ZR;XR ¼ 0 ¼ YR) clearly results
in K0=K, D0=D, M0=M.

The concern of this paper is to provide elementary structure-preserving co-ordinate
transformations which are low-rank modifications of the identity transformation. With
these, it will be possible to design numerically stable co-ordinate transformations such that
after each one, system {K0, D0, M0} has ‘‘more structure’’ than {K, D, M}.
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2. STRUCTURE IN THE SYSTEM MATRICES

System matrices {K, D, M} may be derived for any model of a second order system and
they are often densely populated. In these cases, the direct computation of exact frequency
response at any one forcing frequency, of ; involves the solution of N coupled
simultaneous equations in N complex unknowns. In lumped-mass system models, the
mass matrix, M, may be diagonal. This fact is not useful in the direct computation of exact
frequency response since at every finite frequency, of, the complex (N�N) dynamic
stiffness matrix may still be densely populated. Indeed, even if any two of the system
matrices are diagonal, there is evidently no advantage in the direct computation of
exact frequency response. To gain substantial advantage, it is necessary that the
complex dynamic stiffness matrix for the system has some particular structure for all
frequencies, of.

If all three system matrices {K, D, M} are diagonal, the direct computation of exact
frequency response at any one forcing frequency, of, involves only the solution of N

decoupled equations, each involving only one complex unknown and the advantage
afforded by the diagonal structure is very large for large N}being in the order of N2.

In Part I [1], it was shown that given (almost) any original second order system
{K, D, M}, a real-valued co-ordinate transformation exists to transform this into diagonal
form. This transformation can be derived readily from the usual (complex) modal
information. The fact that solving for the exact frequency response of a system represented
by diagonal {K, D, M} is very computationally efficient is a direct reflection of the fact that
the exact frequency response of any second order system can be determined very efficiently
using its complex modal data. The role of diagonal structure in the system matrices is thus
above question.

Although the diagonal structure is unquestionably the ultimate one in terms of
computational efficiency, there are other matrix structures of substantial practical interest.
Excluding ‘‘sparse’’ matrices (on the grounds that there is no obvious role for co-ordinate
transformations in connection with these) these other matrix structures of interest include:

(a) tridiagonal,
(b) banded,
(c) banded with a bulge,
(d) bordered diagonal,
(e) bordered tridiagonal,
(f) bordered banded.
It is neither necessary nor appropriate to provide formal definitions for these here. Since

diagonal and tridiagonal forms are special cases of banded matrices with half-bandwidths
of 0 and 1, respectively, only classes (b), (c) and (f) require definition and a pictorial
representation of these structures is sufficient for present purposes (see Figure 1).

Systems described by banded matrices have been shown to have practical importance in
vibration analysis}for example in component mode synthesis for structures having rigid
connections [2] and in the context of determining the resonances of periodic structures [3].
Systems described by bordered–banded (bordered-diagonal) matrices appear in the
context of performing structural modifications to locate zeros deliberately [4]. The reasons
for mentioning the banded-with-a-bulge structure emerge subsequently.

Systems whose dynamic stiffness matrix is either banded or bordered–banded may still
afford very substantial computational advantages in the direct computation of exact
frequency response over systems whose dynamic stiffness matrix is not structured. This is
true whenever the width of the band (and border) is very small compared with the overall
dimension of the matrix.



Figure 1. Banded, banded-with-a-bulge, and bordered–banded matrix structures.
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The discussion on structure has focused up to now on frequency response. It could be
extended to include the role of matrix structure in time-domain response computation and
in the computation of characteristic roots where it is equally important but this extension
would detract from the central thrust of the paper. The purpose of this section is to
motivate the remainder of the paper by supporting this assertion

Transforming a given second order system {KO, DO, MO} to a new form {KN, DN, MN}
in which the dynamic stiffness matrix has a banded or bordered–banded structure is a
worthwhile action provided that the transformation itself can be done efficiently.

The objective of the paper is therefore to expose classes of elementary structure-
preserving co-ordinate transformations that will provide the means for this transforma-
tion.

One feature which makes the direct transformation to banded form particularly
attractive is the possibility that the diagonalizing transformation might potentially be
found from the banded form using a variation of the concept of bulge chasing. The
banded-with-a-bulge structure shown in Figure 1 shows some out-of-band non-zeros part
way down the matrix. By performing a suitable structure-preserving transformation, it is
possible that the bulge can be shifted one step further down the matrix. Subsequent steps
can shift this bulge repeatedly downwards until finally it disappears at the bottom right
corner. There are numerous algorithms [5] for the use of bulge-chasing methods in the
standard eigenvalue problem for both upper-Hessenberg and tridiagonal matrices.
Extensions of these algorithms can be envisaged which utilize the elementary structure-
preserving transformations.

3. ELEMENTARY STRUCTURE-PRESERVING CO-ORDINATE TRANSFORMATIONS
FOR SECOND ORDER SYSTEMS

Equations (2)–(4) require that nine different matrix identities be satisfied if the
transformation is structure preserving. Two of these are connected with forcing all
occurrences of K0 in equations (2) and (3) to be identical:

WT
LKZR þ YT

LKXR þ YT
LDZR ¼ WT

LKWR � YT
LMYR;

XT
LKYR þ ZT

LKWR þ ZT
LDYR ¼ WT

LKWR � YT
LMYR:

ð5Þ

A further two equations enforce the equality between all occurrences of M0 in equations
(3) and (4).

WT
LDXR þWT

LMZR þ YT
LMXR ¼ �XT

LKXR þ ZT
LMZR;

XT
LDWR þ XT

LMYR þ ZT
LMWR ¼ �XT

LKXR þ ZT
LMZR:

ð6Þ
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A separate equation again acts to ensure that the occurrences of D0 in equations (2) and (4)
are the same.

XT
LKZR þ ZT

LKXR þ ZT
LDZR ¼ WT

LDWR þWT
LMYR þ YT

LMWR: ð7Þ

Finally, four equations assert the zero blocks in equations (2)–(4). Equation (2) produces
one of these equations,

WT
LKYR þ YT

LKWR þ YT
LDYR ¼ 0: ð8Þ

Equation (3) produces these two:

WT
LKXR � YT

LMZR ¼ 0; XT
LKWR � ZT

LMYR ¼ 0 ð9Þ

and equation (4) produces

XT
LDXR þ XT

LMZR þ ZT
LMXR ¼ 0: ð10Þ

These equations are not all independent. It was noted previously [1] that equation (4) is
automatic given equations (2) and (3). Hence it is acceptable to adopt only those criteria
for structure preservation arising completely from equations (2) and (3) combined. These
are equations (5), (8) and (9).

From this point onwards, attention is restricted to the case where {WL, ZL, WR, ZR} are
each unit-rank modifications of the identity matrix and {XL, YL, XR, YR} are unit-rank
matrices. Under these restrictions, there must exist some eight N vectors {aL, bL, cL, dL, eL,
fL, gL, hL} defining the left transformation according to

WL ¼ ðIþ aLb
T
LÞ; XL ¼ ðcLd

T
LÞ;

YL ¼ ðeLf
T
LÞ; ZL ¼ ðIþ gLh

T
LÞ

ð11Þ

and a further eight N vectors {aR, bR, cR, dR, eR, fR, gR, hR} defining the right

transformation according to

WR ¼ ðIþ aRb
T
RÞ; XR ¼ ðcRd

T
RÞ;

YR ¼ ðeRf
T
RÞ; ZR ¼ ðIþ gRh

T
RÞ:

ð12Þ

Substituting equations (11) and (12) into equations (5), (8) and (9) produces five different
conditions on the 16 vectors. Appendix A develops these conditions into a simple form. It
shows that there are two distinct classes of elementary structure preserving transforma-
tions according to equations (11) and (12).

3.1. CLASS-1 ELEMENTARY STRUCTURE-PRESERVING TRANSFORMATIONS

Any set of vectors {aL, bL, cL, dL, eL, fL, gL, hL} and {aR, bR, cR, dR, eR, fR, gR, hR}
obeying

gL ¼ aL; hL ¼ bL; cL ¼ dL ¼ eL ¼ fL ¼ 0;

gR ¼ aR; hR ¼ bR; cR ¼ dR ¼ eR ¼ fR ¼ 0
ð13Þ

defines one of these transformations (according to equations (11) and (12)) and preserves
structure. Evidently, only four N vectors may be chosen independently here (aL, bL, aR,
bR), and there are two degrees of redundancy in this choice. For improved clarity in the
remainder of this paper, all Class-1 elementary structure-preserving transformations are
represented using vectors {mL, nL, mR, nR} in place of {aL, bL, aR, bR}, respectively, and
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these transformations can be described (more succinctly than equations (11) and (12)) by

WL ¼ ðIþmLn
T
LÞ ¼ ZL; XL ¼ 0 ¼ YL;

WR ¼ ðIþmRn
T
RÞ ¼ ZR; XR ¼ 0 ¼ YR:

ð14Þ

3.2. CLASS-2 ELEMENTARY STRUCTURE-PRESERVING TRANSFORMATIONS

Any set of vectors {aL, bL, cL, dL, eL, fL, gL, hL} and {aR, bR, cR, dR, eR, fR, gR, hR}
obeying

gL ¼ eL ¼ cL ¼ aL; gR ¼ eR ¼ cR ¼ aR ð15Þ

and satisfying

KTaL þ bRxK þ fRxD ¼ 0; KaR þ bLxK þ fLxD ¼ 0;

DTaL þ dRxK þ ðbR þ hRÞxD þ fRxM ¼ 0; DaR þ dLxK þ ðbL þ hLÞxD þ fLxM ¼ 0;

MTaL þ dRxD þ hRxM ¼ 0; MaR þ dLxD þ hLxM ¼ 0;

ð16Þ

where the scalars {xK, xD, xM} are defined by

xK :¼ ðaTLKaRÞ; xD :¼ 1
2
ðaTLDaRÞ; xM :¼ ðaTLMaRÞ ð17Þ

defines one of these transformations (according to equations (11) and (12)) and preserves
structure. Once again, four different N vectors may be chosen independently and there are
two degrees of redundancy in this choice. Provided that vectors aR and aL are chosen
directly, equations (16) are linear with respect to the other vectors. Selecting (bL�hL) and
(bR�hR) in addition to aR and aL is attractive (where an arbitrary Class-2 transformation
is desired) for symmetry reasons. Note that (bL+hL) and (bR+hR) are fully determined
once aR and aL are known since Appendix A shows that for these transformations

ðbR þ hRÞ ¼ �ðMTaLxK �DTaLxD þ KTaLxMÞ
ðxK xM � x2

DÞ
;

ðbL þ hLÞ ¼ �ðMaRxK �DaRxD þ KaRxMÞ
ðxK xM � x2

DÞ
:

ð18Þ

Because of equation (15), no further reference is made to vectors {cL, eL, gL} since they are
represented perfectly by aL. Similarly for {cR, eR, gR} since they are represented perfectly
by aR. Hence, an elementary transformation of this type is considered to be represented by
only 10 vectors, {aL, bL, dL, fL, hL} representing the left transformation and {aR, bR, dR, fR,
hR} representing the right transformation.

4. THE CHANGES BROUGHT ABOUT BY THE ELEMENTARY TRANSFORMATIONS

Two distinct classes of elementary structure-preserving transformation have now been
defined. Because each of these transformations are low-rank modifications of the identity
transformation, the changes in the system matrices brought about by the transformations
will also be low rank. The Class-1 and Class-2 elementary transformations are discussed
separately. In both cases, matrices {K0, D0, M0} will represent the matrices of the new
system obtained after the transformation.
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4.1. CLASS-1 ELEMENTARY STRUCTURE-PRESERVING TRANSFORMATIONS

Equations (14) describe the transformation in terms of the four vectors {mL, nL, mR, nR}
and equations (2)–(4) show how this transformation applies to the original second order
system {K, D, M}, to produce the new system {K0, D0, M0}. In the case of Class-1
elementary transformations, the relationship between the original system and the
transformed one can be written much more simply as

K0 ¼ ðIþ nLm
T
LÞKðIþmRn

T
RÞ; D0 ¼ ðIþ nLm

T
LÞDðIþmRn

T
RÞ;

M0 ¼ ðIþ nLm
T
LÞMðIþmRn

T
RÞ: ð19Þ

The changes occurring in the system matrices as a result of a single Class-1 elementary
transformation are then easily derived as

ðK0 � KÞ ¼ KmRn
T
RnLm

T
LKþ nLðmT

LKmRÞnTR;
ðD0 �DÞ ¼ DmRn

T
R þ nLm

T
LDþ nLðmT

LDmRÞnTR; ð20Þ
ðM0 �MÞ ¼ MmRn

T
R þ nLm

T
LMþ nLðmT

LMmRÞnTR:

Each of the above modifications can be shown to have rank 2.

4.2. CLASS-2 ELEMENTARY STRUCTURE-PRESERVING TRANSFORMATIONS

Equations (15) are used to eliminate {cL, eL, gL, cR, eR, gR} from equations (11) and (12)
so that the general Class-2 transformation is described by

WL XL

YL ZL

" #
:¼

ðIþ aLb
T
LÞ ðaLd

T
LÞ

ðaLf
T
LÞ ðIþ aLh

T
LÞ

" #
;

WR XR

YR ZR

" #
:¼

ðIþ aRb
T
RÞ ðaRd

T
RÞ

ðaRf
T
RÞ ðIþ aRh

T
RÞ

" #
:

ð21Þ

The vectors are subject to the constraints of equation (16). The modifications occurring in
the system matrices as a result of one of these Class-2 elementary transformations are
found to be

ðK� K’Þ ¼ xKbLb
T
R þ xDðbLf

T
R þ fLb

T
RÞ þ xM fLf

T
R;

ðD�D’Þ ¼ xKðbLd
T
R þ dLb

T
RÞ

þ xDðbLh
T
R þ hLb

T
R þ fLd

T
R þ dLf

T
RÞ þ xMðfLh

T
R þ hLf

T
RÞ;

ðM�M’Þ ¼ xKdLd
T
R þ xDðdLh

T
R þ hLd

T
RÞ þ xMhLh

T
R: ð22Þ

A derivation of these identities is provided in Appendix B. The modifications in equation
(22) are deliberately presented in the opposite sense from those of equation (20) to avoid
the need for additional brackets. The modifications to the system stiffness and mass
matrices under a Class-2 transformation are each rank 2. The modification to the system
damping matrix is rank 4.

5. THE INVERSES OF THE ELEMENTARY TRANSFORMATIONS

For every structure-preserving transformation which transforms the system {K, D, M}
into the new system {K0, D0, M0}, there must be an inverse structure-preserving
transformation which transforms back from system {K0, D0, M0} to {K, D, M}. The
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inverses of the elementary structure-preserving transformations are of interest for two
separate reasons:

* firstly, considerable insight is gained into the condition of the transformation from the
expression of its inverse and it becomes evident how to construct well-conditioned
transformations;

* secondly, it is interesting to discover that the inverse of an elementary structure-
preserving transformation is an elementary structure-preserving transformation of the
same form.

In all previous sections, it has been recognized that the transformation applied to the left
of the system may be different from that applied to the right. The distinction between left
and right transformations is not relevant here and subscripts R and L are dropped.

Class-1 elementary structure-preserving transformations involve matrices of the
structure (I+mnT).

The inverse of any one such transformation is clear from

ðIþmnTÞ�1 ¼ ðI� ðmnTÞ=ð1þmTnÞÞ: ð23Þ

Evidently, a given Class-1 transformation matrix will be well conditioned provided that
(1+mTn) is not close to zero.

The inverse of the general Class-2 elementary structure-preserving transformation
matrix is more challenging. Postulating that the inverse has the same form as the
transformation itself, it is evident that there must be some vectors {r, s, t, u, v} satisfying

ðIþ rsTÞ ðrtTÞ
ðruTÞ ðIþ rvTÞ

" #
ðIþ abTÞ ðadTÞ
ðafTÞ ðIþ ahTÞ

" #
¼

I 0

0 I

" #
: ð24Þ

Appendix C shows how the vectors {r, s, t, u, v} are computed. An immediate conclusion
from the expansion of equation (24) is that

r ¼ a; ð25Þ

without loss of generality. It is also immediately evident that vectors {s, u} are each linear
combinations of {b, f} and that vectors {t, v} are each linear combinations of {d, h}. The
detail behind the determination of coefficients is consigned to Appendix B so as not to
obscure the simplicity of this important point:

The only criterion which can lead to a poorly conditioned inverse of a Class-2 elementary

structure preserving transformation matrix is

ð1þ bTaÞ ð1þ hTaÞ � ðdTaÞ ðfTaÞ ¼ 0: ð26Þ

In devising Class-2 transformations for specific purposes, numerical stability demands that
they should be far removed from the possibility that this might occur.

6. ILLUSTRATION

The matter of how to determine a series of elementary structure-preserving
transformations such that the system matrices at the end of this series of transformations
have a banded structure or a bordered–banded structure reduces to the following single
question:

Given a system characterized by matrices {K, D, M}, how can structure-preserving
co-ordinate transformation matrices {WL, XL, YL, ZL, WR, XR, YR, ZR} be computed
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directly such that

* the transformation represented by {WL, XL, YL, ZL, WR, XR, YR, ZR} is a low-rank
modification of the identity transformation and it is well conditioned,

* the transformed matrices {K0, D0, M0} each have zeros in all positions in the first row
and first column except in positions (1,1), (1,2) and (2,1),

* the transformation matrices {WL, XL, YL, ZL, WR, XR, YR, ZR} each have zeros in all
positions in row 1 except position (1,1) which should equal unity,

* the transformation represented by {WL, XL, YL, ZL, WR, XR, YR, ZR} is optimally
conditioned?

Such transformations will be a generalization of transformations which have been
reported by the present authors [6] for the simultaneous tridiagonalization of two
symmetric matrices.

The answer to this question is not yet fully resolved but the indications are that
transformations comprising a Class-2 component followed by a Class-1 component (or
vice versa) will serve for this purpose. The number of independent parameters in a Class-2
transformation (4N�2) alone is not sufficient to satisfy this requirement. This same answer
will provide the tool with which bulge chasing can be conducted and therefore it will
simultaneously provide a set of routes to the solution of the quadratic eigenvalue problem
which do not involve the conventional solution for complex modes. An illustration is given
as an indication of what is to come.

The following illustration has been computed beginning from a system characterized by
tridiagonal matrices and using arbitrary Class-2 elementary transformations to ‘‘un-
tridiagonalize’’ it in steps. No Class-1 elementary transformations are used here. Since the
inverse of any elementary structure-preserving transformation ({K, D, M}! {K0, D0, M0})
is the elementary structure-preserving transformation ({K0, D0, M0}! {K, D, M}) having
the same form, constructing an illustration of system tridiagonalisation is not difficult. For
the purposes of illustration, the example is presented beginning with the fully populated
symmetric system {K1, D1, M1}, and then showing increasingly structured systems {K2, D2,
M2}, {K3, D3, M3} and {K4, D4, M4} (all symmetric) with the latter system being
tridiagonal.

Because of the symmetry, no distinction is needed between the left and right
transformations. The vectors describing each of the three different Class-2 elementary
transformations applied are also reported. Vectors {a12, b12, d12, f12, h12} describe the
transformation between {K1, D1, M1} and {K2, D2, M2}, vectors {a23, b23, d23, f23, h23}
describe the transformation between {K2, D2, M2} and {K3, D3, M3} and vectors {a34, b34,
d34, f34, h34} describe the transformation between {K3, D3, M3} and {K4, D4, M4}.

All matrices and vectors are reported to a high degree of precision so that the process
can be reproduced accurately:



9687009842E � 1 �4	299655673920E � 1

8610219661E � 1 �6	358515616947E � 1

6487491067E � 1 �4	113543251574E � 1

0977161872E � 2 �2	529474024828E � 1

9474024828E � 1 2	212367731216E � 1

3
7777775
;

ð27Þ

4380577136E� 1 8	507628714758E� 1

7973391250Eþ 0 �2	265758694548Eþ 0

1979877414Eþ 0 �1	580855438285Eþ 0

7789544473E� 1 �7	323644438404E� 1

3644438404E� 1 8	635728513120E� 1

3
7777775
;

ð28Þ

9222788457Eþ 0 4	910446683326E� 1

5446904886Eþ 0 �1	978438484593Eþ 0

2984280593Eþ 0 �1	027663084239Eþ 0

0797402211E� 2 �1	067203233125Eþ 0

7203233125Eþ 0 1	806904351274E� 2

3
7777775
;

ð29Þ

0438227E þ 2 �6	976336579791Eþ 1

1720610E þ 2 �3	036180015698Eþ 1

8343741E þ 2 4	854826590775Eþ 1

2474142E þ 1 2	595080091807E� 1

3144262E þ 2 �4:433736649220Eþ 1

3
7777775
; ð30Þ

S
.
D
.
G
A
R
V
E
Y

E
T

A
L

.
9
2
0

M1 ¼

2	514552538440E þ 0 6	796559447073E � 1 5	609999855327E � 1 1	05
6	796559447073E � 1 1	189679145862E þ 0 8	806062340494E � 1 3	44
5	609999855327E � 1 8	806062340494E � 1 5	994678345702E � 1 3	20
1	059687009842E � 1 3	448610219661E � 1 3	206487491067E � 1 1	66

�4	299655673920E � 1 �6	358515616947E � 1 �4	113543251574E � 1 �2	52

2
6666664

C1 ¼

1	019268190703Eþ 1 �1	380449665411Eþ 0 �1	139160405307Eþ 0 �2	14
�1	380449665411Eþ 0 4	930314048456Eþ 0 3	556761340894Eþ 0 1	46
�1	139160405307Eþ 0 3	556761340894Eþ 0 2	511616346633Eþ 0 1	13
�2	144380577136E� 1 1	467973391250Eþ 0 1	131979877414Eþ 0 3	36
8	507628714758E� 1 �2	265758694548Eþ 0 �1	580855438285Eþ 0 �7	32

2
6666664

K1 ¼

3	434210664432Eþ 1 �3	100846685418Eþ 0 �1	769917339996Eþ 0 �1	53
�3	100846685418Eþ 0 4	361433462891Eþ 0 3	081163329822Eþ 0 1	46
�1	769917339996Eþ 0 3	081163329822Eþ 0 1	906016577297Eþ 0 1	37
�1	539222788457Eþ 0 1	465446904886Eþ 0 1	372984280593Eþ 0 5	80
4	910446683326E� 1 �1	978438484593Eþ 0 �1	027663084239Eþ 0 �1	06

2
6666664

½a12b12d12f12h12� ¼
0	000000000000Eþ 0 �8	818008634402E þ 1 1	841672054610E þ 1 1	28917

�2	788982905733E� 1 6	425652524803E þ 1 3	765267040090E þ 1 �2	52942
3	175431571666E� 1 4	381078920910E þ 0 �7	345899496798E þ 1 2	45134
2	303887956148E� 1 �2	784205905415E þ 1 �2	837213130100E þ 1 9	02320
4	416117392699E� 2 �2	358337461023E þ 1 4	470402951462E þ 1 �1	54897

2
6666664



000000000Eþ 0 0	000000000000Eþ 0

671596836E� 2 4	213228563312E� 2

014993984Eþ 0 �1	714936602206Eþ 0

723938057E� 1 �7	233129697536E� 1

129697536E� 1 1	041035984013Eþ 0

3
7777775
;

ð31Þ

0000000000Eþ 0 0	000000000000Eþ 0

3535886181E� 1 �9	641185983009E� 1

1519513906Eþ 0 �1	342598058385Eþ 0

1356957399E� 1 �8	029592159905E� 1

9592159905E� 1 6	372396410684E� 1

3
7777775
;

ð32Þ

0000000000Eþ 0 0	000000000000Eþ 0

3810467368E� 1 1	118621601203Eþ 0

2578393286Eþ 0 �5	336751293275Eþ 0

3661297797E� 1 �2	075499718163Eþ 0

5499718163Eþ 0 3	149271337742Eþ 0

3
7777775
;

ð33Þ

0000000E þ 0 0	000000000000E þ 0

6243365E þ 0 �3	564737544860E þ 0

4287758E þ 1 �7	800908465912E þ 0

3930860E þ 1 4	237862806769E � 1

1101331E þ 1 �1	799395645483E þ 0

3
7777775
; ð34Þ

E
L
E
M

E
N
T
A
R
Y

S
E
C
O
N
D

O
R
D
E
R

T
R
A
N
S
F
O
R
M

A
T
IO

N
S

9
2
1

M2 ¼

3	000000000000E þ 0 1	000000000000E þ 0 0	000000000000E þ 0 0	000
1	000000000000E þ 0 1	755158164336E þ 0 �2	141074791914E � 1 �6	321
0	000000000000E þ 0 �2	141074791914E � 1 2	730241908707E þ 0 1	135
0	000000000000E þ 0 �6	321671596836E � 2 1	135014993984E þ 0 3	626
0	000000000000E þ 0 4	213228563312E � 2 �1	714936602206E þ 0 �7	233

2
6666664

D2 ¼

8	000000000000Eþ 0 �1	000000000000Eþ 0 0	000000000000Eþ 0 0	00
�1	000000000000Eþ 0 7	180891786074Eþ 0 1	462627371105Eþ 0 6	42
0	000000000000Eþ 0 1	462627371105Eþ 0 2	488287707049Eþ 0 1	50
0	000000000000Eþ 0 6	423535886181E� 1 1	501519513906Eþ 0 7	09
0	000000000000Eþ 0 �9	641185983009E� 1 �1	342598058385Eþ 0 �8	02

2
6666664

K2 ¼

3	800000000000E þ 1 �7	000000000000E þ 0 0	000000000000Eþ 0 0	00
�7	000000000000E þ 0 1	067859107614E þ 1 �2	223935371196Eþ 0 �8	48
0	000000000000E þ 0 �2	223935371196E þ 0 8	170406649053Eþ 0 3	18
0	000000000000E þ 0 �8	483810467368E � 1 3	182578393286Eþ 0 9	15
0	000000000000E þ 0 1	118621601203E þ 0 �5	336751293275Eþ 0 �2	07

2
6666664

½a23b23d23f23h23� ¼
0	000000000000E þ 0 0	000000000000E þ 0 0	000000000000E þ 0 0	00000
0	000000000000E þ 0 �1	386533382617E þ 0 5	4400928207E � 015 3	26730
5	103780278271E � 1 1	409996801975E þ 0 3	329462938489E þ 0 �2	10275

�1	381631989881E � 1 �2	630586887750E þ 0 �9	555380110430E � 1 1	56024
7	561217117064E � 1 3	064909179669E þ 0 1	715198076126E þ 0 �2	33088

2
6666664



00000000000E þ 0 0	000000000000E þ 0

00000000000E þ 0 0	000000000000E þ 0

37001110964E � 1 �8	962863435737E � 1

57751217053E � 1 �9	797134072716E � 1

97134072716E � 1 1	489000202262E þ 0

3
7777775
; ð35Þ

0	000000000000E þ 0 0	000000000000E þ 0

0	000000000000E þ 0 0	000000000000E þ 0

3	895143143096E � 1 1	464332065665E þ 0

1	040111572147E þ 0 �1	440038145687E þ 0

1	440038145687E þ 0 1	763209234891E þ 0

3
7777775
;

ð36Þ

0	000000000000Eþ 0 0	000000000000E þ 0

0	000000000000Eþ 0 0	000000000000E þ 0

1	740311056911Eþ 0 2	281434304519E þ 0

4	681404919161Eþ 0 �7	639833302348E þ 0

7	639833302348Eþ 0 1	151018620998E þ 1

3
7777775
;

ð37Þ

00000000000E þ 0 0	000000000000Eþ 0

00000000000E þ 0 0	000000000000Eþ 0

23265195739E þ 0 �1	485253071924Eþ 0

32461791603E þ 1 6	625746043331Eþ 0

91806554294E þ 1 2	272816440996Eþ 0

3
7777775
; ð38Þ

S
.
D
.
G
A
R
V
E
Y

E
T

A
L

.
9
2
2

M3 ¼

3	000000000000Eþ 0 1	000000000000E þ 0 0	000000000000E þ 0 0	0
1	000000000000Eþ 0 2	000000000000E þ 0 0	000000000000E þ 0 0	0
0	000000000000Eþ 0 0	000000000000E þ 0 4	578117891291E þ 0 7	1
0	000000000000Eþ 0 0	000000000000E þ 0 7	137001110964E � 1 5	1
0	000000000000Eþ 0 0	000000000000E þ 0 �8	962863435737E � 1 �9	7

2
6666664

D3 ¼

8	000000000000Eþ 0 �1	000000000000E þ 0 0	000000000000E þ 0

�1	000000000000Eþ 0 7	000000000000E þ 0 2	000000000000E þ 0

0	000000000000Eþ 0 2	000000000000E þ 0 6	182495923235E þ 0 �
0	000000000000Eþ 0 0	000000000000E þ 0 �3	895143143096E � 1

0	000000000000Eþ 0 0	000000000000E þ 0 1	464332065665E þ 0 �

2
6666664

K3 ¼

3	800000000000Eþ 1 �7	000000000000Eþ 0 0	000000000000Eþ 0

�7	000000000000Eþ 0 1	100000000000Eþ 1 �3	000000000000Eþ 0

0	000000000000Eþ 0 �3	000000000000Eþ 0 1	545618323018Eþ 1 �
0	000000000000Eþ 0 0	000000000000Eþ 0 �1	740311056911Eþ 0

0	000000000000Eþ 0 0	000000000000Eþ 0 2	281434304519Eþ 0 �

2
6666664

½a34b34d34f34h34� ¼
0	000000000000E þ 0 0	000000000000E þ 0 0	000000000000E þ 0 0	0
0	000000000000E þ 0 0	000000000000E þ 0 0	000000000000E þ 0 0	0
0	000000000000E þ 0 2	057195824880E þ 0 �2	361632597869E þ 0 �4	7

�3	888460332497E � 1 �8	477660971198E � 1 �1	061986006121E þ 1 2	8
�2	584088996830E � 1 �3	227677448428E þ 0 �6	681310188359E þ 0 2	5

2
6666664



0000000000E þ 0 0	000000000000Eþ 0 0	000000000000Eþ 0

0000000000E þ 0 0	000000000000Eþ 0 0	000000000000Eþ 0

0000000000E þ 0 2	000000000000Eþ 0 0	000000000000Eþ 0

0000000000E þ 0 7	000000000000Eþ 0 3	000000000000Eþ 0

0000000000E þ 0 3	000000000000Eþ 0 4	000000000000Eþ 0

3
7777775
; ð39Þ

00000000000E þ 0 0	000000000000E þ 0 0	000000000000Eþ 0

00000000000E þ 0 0	000000000000E þ 0 0	000000000000Eþ 0

00000000000E þ 0 �3	000000000000E þ 0 0	000000000000Eþ 0

00000000000E þ 0 5	000000000000E þ 0 2	000000000000Eþ 0

00000000000E þ 0 2	000000000000E þ 0 4	000000000000Eþ 0

3
7777775
; ð40Þ

00000000000Eþ 0 0	000000000000Eþ 0 0	000000000000E þ 0

00000000000Eþ 0 0	000000000000Eþ 0 0	000000000000E þ 0

00000000000Eþ 1 �4	000000000000Eþ 0 0	000000000000E þ 0

00000000000Eþ 0 2	000000000000Eþ 1 6	000000000000E þ 0

00000000000Eþ 0 6	000000000000Eþ 0 2	400000000000E þ 1

3
7777775
: ð41Þ

E
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9
2
3

M4 ¼

3	000000000000Eþ 0 1	000000000000Eþ 0 0	00
1	000000000000Eþ 0 2	000000000000Eþ 0 0	00
0	000000000000Eþ 0 0	000000000000Eþ 0 5	00
0	000000000000Eþ 0 0	000000000000Eþ 0 2	00
0	000000000000Eþ 0 0	000000000000Eþ 0 0	00

2
6666664

D4 ¼

8	000000000000E þ 0 �1	000000000000E þ 0 0	0
�1	000000000000E þ 0 7	000000000000E þ 0 2	0
0	000000000000E þ 0 2	000000000000E þ 0 6	0
0	000000000000E þ 0 0	000000000000E þ 0 �3	0
0	000000000000E þ 0 0	000000000000E þ 0 0	0

2
6666664

K4 ¼

3	800000000000Eþ 1 �7	000000000000Eþ 0 0	0
�7	000000000000Eþ 0 1	100000000000Eþ 1 �3	0
0	000000000000Eþ 0 �3	000000000000Eþ 0 1	6
0	000000000000Eþ 0 0	000000000000Eþ 0 �4	0
0	000000000000Eþ 0 0	000000000000Eþ 0 �0	0

2
6666664
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7. CONCLUSIONS

This paper defines the concept of an elementary structure-preserving transformation for
a general second order system and justifies the study of these by highlighting the usefulness
of different structures of matrix in different areas of vibration analysis.

It shows that there are two distinct classes of elementary structure-preserving
transformations for second order systems. One of these classes (Class-1) contains all of
the ‘‘conventional’’ co-ordinate transformation matrices that are unit-rank modifications
of the identity transformation. Transformations within the other class involve combina-
tions of displacements and velocities from the original system co-ordinates in the
displacement co-ordinates of the transformed system. For a second order system having N

degrees of freedom, the dimension of the space of all Class-1 elementary transformations is
(4N–2). The dimension of the space of all Class-2 elementary structure-preserving
transformations is also (4N–2).

The paper shows how the inverses of elementary transformations from the two different
classes are computed and from this, it extracts the unique condition which must apply if
one of the elementary transformations is to be singular. Obviously, this is a condition to be
avoided widely. Finally, an illustration is given of the simultaneous tridiagonalization of
three system matrices of a symmetric system.

The implications of this paper range over numerical processes in vibration analysis,
theoretical reasoning and practical development and use of methods.

In the category of contributions to numerical processes, the ability to transform
from a general (self-adjoint) system to a tridiagonal form and subsequently to a diagonal
form may completely supplant the existing numerical methods for computing
eigenfrequencies and modes. Such a transformation is expected to follow a close parallel
to a process already developed for simultaneously tridiagonalizing the two matrices of an
undamped system [6]. Tridiagonal system form may be especially useful for dynamic
substructuring applications. The possibility of performing structure-preserving model-
reducing transformations constructed from elementary structure-preserving transforma-
tions in the course of a finite-element calculation (model assembly) also appears very
strong.

In the category of theoretical reasoning, it is immediately evident that if it can
be proven that well-conditioned elementary transformations exist which can perform
any one step of the system tridiagonalization process, then Falk’s theorem [7] that
every undamped system is equivalent to a chain system may be generalised to damped
systems.

There are numerous possibilities in the category of practical methods development and
use and these include applications in active vibration control, system identification and
updating and efficient compression/expansion of ‘‘complex’’ modal data.
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APPENDIX A: DERIVATION OF THE STRUCTURE-PRESERVING CONSTRAINTS

Equations (11) and (12) in the main text can be used to substitute for {WL, XL, YL, ZL,
WR, XR, YR, ZR} in equations (5), (8) and (9) to produce constraint equations acting on
{aL, bL, cL, dL, eL, fL, gL, hL} and {aR, bR, cR, dR, eR, fR, gR, hR}. Equation (5) of the main
text produces

ðIþ bLa
T
LÞKðIþ gRh

T
RÞ þ fLe

T
LðKcRd

T
R þDðIþ gRh

T
RÞÞ

¼ ðIþ bLa
T
LÞ

T
KðIþ aRb

T
RÞ � fLe

T
LMeRfR;

ðIþ hLg
T
LÞKðIþ aRb

T
RÞ þ ðdLc

T
LKþ ðIþ gLh

T
LÞDÞeRf

T
R

¼ ðIþ bLa
T
LÞ

T
KðIþ aRb

T
RÞ � fLe

T
LMeRfR: ðA:1Þ

Equation (8) of the main text reveals

fLe
T
LDeRf

T
R þ ðfLe

T
LKðIþ aRb

T
RÞ þ ðIþ bLa

T
LÞKeRf

T
RÞ ¼ 0 ðA:2Þ

and equation (9) of the main text emerges as

ðIþ bLa
T
LÞKcRd

T
R � fLe

T
LMðIþ gRh

T
RÞ ¼ 0;

dLc
T
LKðIþ aRb

T
RÞ � ðIþ hLg

T
LÞMeRf

T
R ¼ 0: ðA:3Þ

The concern of this Appendix is to distill from the quadratic conditions of equations
(A.1)–(A.3), linear conditions on the vectors. This process begins by rewriting equation
(A.2) as follows:

ðfL þ a�1ððIþ bLa
T
LÞKeRÞÞaðfR þ a�1ððIþ bRa

T
RÞKTeLÞÞT

¼ ððIþ bLa
T
LÞKeRÞa�1ððIþ bRa

T
RÞKeLÞT;

where a ¼ eTLDeR: ðA:4Þ
There are two distinct ways in which equation (A.4) may be satisfied. Each of these leads
to a distinct set of solutions. The trivial solutions to equation (A.4) arise by setting:

fL ¼ 0 ¼ fR ðA:5Þ
The elementary structure-preserving transformations satisfying equation (A.5) will be
referred to as Class-1 elementary structure-preserving transformations. The term Class-2
elementary structure-preserving transformations will be used to describe those elementary
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structure-preserving transformations obeying

fL ¼ �2a�1ððIþ bLa
T
LÞKeRÞ; fR ¼ �2a�1ððIþ bRa

T
RÞKTeLÞ: ðA:6Þ

Now gather terms in equation (A.1) with the following result:

ðIþ bLa
T
LÞKðgRh

T
R � aRb

T
RÞ þ fLe

T
LðKcRd

T
R þDðIþ gRh

T
RÞ þMeRf

T
RÞ ¼ 0;

ðhLg
T
L � bLa

T
LÞKðIþ aRb

T
RÞ þ ðdLc

T
LKþ ðIþ hLg

T
LÞDþ fLe

T
LMÞeRf

T
R ¼ 0:

ðA:7Þ

For Class-1 transformations, equation (A.5) applies and if it is assumed that matrices {K,
(I+bLaL

T), (I+bRaR
T)} are all non-singular then it is necessary that

gRh
T
R ¼ aRb

T
R; gLh

T
L ¼ aLb

T
L: ðA:8Þ

Retaining the assumption that {K, (I+bLaL
T), (I+bRaR

T)} are all non-singular, equation
(A.3) then demands

cRd
T
R ¼ 0 ¼ cLd

T
L: ðA:9Þ

Additional solutions may be possible in special cases where (I+bLaL
T) and/or (I+bRaR

T) are
singular but this would mean that one or both of the transformation matrices were
singular and such cases are of no practical importance or use. Similarly, additional
solutions might be possible when K is singular but there appears to be little practical
motivation for investigating these.

Equations (A.5), (A.8) and (A.9) can be compacted, without loss of generality, into the
following linear constraints applying to the general Class-1 elementary structure-
preserving transformation:

gL ¼ aL; hL ¼ bL; cL ¼ dL ¼ eL ¼ fL ¼ 0;

gR ¼ aR; hR ¼ bR; cR ¼ dR ¼ eR ¼ fR ¼ 0:
ðA:10Þ

Now consider that equation (A.6) holds in place of equation (A.5) as a means of ensuring
that equation (A.2) is satisfied. Equations (A.3) are satisfied if there are some real scalars,
b1 and b2, such that

fL ¼ b1ðIþ bLa
T
LÞKcR; dR ¼ b1ðIþ hRg

T
RÞMTeL;

fR ¼ b2ðIþ bRa
T
RÞKTcL; dL ¼ b2ðIþ hLg

T
LÞMeR:

ðA:11Þ

Because cR and dR appear together in the product cRdR
T and cL and dL appear together in

the product cLdL
T, there is no loss of generality in setting

b1 ¼ �2a�1 ¼ b2 ðA:12Þ
in which case a direct comparison of equations (A.11) and (A.6) produces the linear
constraints

cL ¼ eL; cR ¼ eR: ðA:13Þ
Now examine equations (A.7) again. The second term in each of these equations is unit
rank. It follows that the first term must also be unit rank in each case. There are two
possible ways to ensure that the first term is single rank: either

hR ¼ bRg1; hL ¼ bLg2 ðA:14Þ
for some arbitrary real constants, g1 and g2, or

gR ¼ aRg1; gL ¼ aLg2: ðA:15Þ
The Class-1 elementary structure-preserving transformations obey equation (A.14). For

Class-2 elementary structure-preserving transformations, equations (A.15) are applied and
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the scalars g1 and g2 are set to unity

g1 ¼ 1 ¼ g2 ðA:16Þ
without loss of generality. Then equations (A.7) can be satisfied by

fL ¼ d1ðIþ bLa
T
LÞKaR;

ðhR � bRÞ ¼ �d1½dRc
T
RK

T þ ðIþ hRg
T
RÞDT þ fRe

T
RM

T�eL;

fR ¼ d2ðIþ bRa
T
RÞKTaL;

ðhL � bLÞ ¼ �d2½dLc
T
LKþ ðIþ hLg

T
LÞDþ fLe

T
LM�eR: ðA:17Þ

where d1 and d2 are arbitrary real constants. Once again, without loss of generality, set

d1 ¼ �2a�1 ¼ d2 ðA:18Þ
Then comparing equations (A.17) and (A.11) with equation (A.6) and recalling equation
(A.15) yields

gL ¼ eL ¼ cL ¼ aL; gR ¼ eR ¼ cR ¼ aR: ðA:19Þ
Use equation (A.19) to eliminate {cL, eL, gL, cR, eR, gR} in all previous equations and
define

xK :¼ ðaTLKaRÞ; xD :¼ 1
2
ðaTLDaRÞ; xM :¼ ðaTLMaRÞ: ðA:20Þ

Equations (A.11) then simplify to

fLxD ¼ �ðIþ bLa
T
LÞKaR; dRxD ¼ �ðIþ hRa

T
RÞMTaL;

fRxD ¼ �ðIþ bRa
T
RÞKTaL; dLxD ¼ �ðIþ hLa

T
LÞMaR:

ðA:21Þ

Using equation (A.20), these can be rearranged to produce

KaR þ bLxK þ fLxD ¼ 0; KTaL þ bRxK þ fRxD ¼ 0: ðA:22Þ
and

MaR þ dLxD þ hLxM ¼ 0; MTaL þ dRxD þ hRxM ¼ 0: ðA:23Þ
Apply equation (A.21) to substitute for {dR, dL, fR, fL} in the expressions for (hL–bL) and
(hR–bR) in equation (A.17) with the result

ðbR þ hRÞ ¼ �ðMTaLxK �DTaLxD þ KTaLxMÞ
ðxK xM � x2

DÞ
;

bL þ hLð Þ ¼ �ðMaRxK �DaRxD þ KaRxMÞ
ðxK xM � x2

DÞ
:

ðA:24Þ

Multiply equations (A.22) by xM, multiply equations (A.23) by xK and add the two sets of
equations together in order to obtain

ðxK xMÞðbL þ hLÞ þ xMKaR þ ðxDxMÞfL þ xKMaR þ ðxK xDÞdL ¼ 0;

ðxK xMÞðbR þ hRÞ þ xMKTaL þ ðxDxMÞfR þ xKM
TaL þ ðxK xDÞdR ¼ 0:

ðA:25Þ

Apply equation (A.24) to substitute for (KaRxM+MaRxK) and (KTaLxM+MTaLxK) in the
above and it is found that

DaR þ dLxK þ ðbL þ hLÞxD þ fLxM ¼ 0;

DTaL þ dRxK þ ðbR þ hRÞxD þ fRxM ¼ 0:
ðA:26Þ
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The constraints on Class-2 elementary structure-preserving constraints have now been put
in linear form as equations (A.22), (A.23) and (A.26).

APPENDIX B: CHANGES IN THE SYSTEM MATRICES AS A RESULT OF A CLASS-2
ELEMENTARY STRUCTURE-PRESERVING TRANSFORMATION

Let {K0, D0, M0} represent the new system after a Class-2 elementary structure-
preserving transformation has been applied.

The change occurring in the stiffness matrix is expressed initially as

K0 ¼ ðIþ bLa
T
LÞKðIþ aRb

T
RÞ � ðfLa

T
LÞMðaRf

T
RÞ: ðB:1Þ

Using the definitions of {xK, xD, xM} in the main text, this simplifies to

ðK0 � KÞ ¼ bLa
T
LKþ KaRb

T
R þ bLb

T
RxK � fLf

T
RxM : ðB:2Þ

Using equations (16) of the main text to replace KaR and aL
TK in equation (B.2) gives

ðK� K0Þ ¼ bLðbTRxK þ fTRxDÞ þ ðbLxK þ fLxDÞbTR � bLb
T
RxK þ fLf

T
RxM

¼ bLb
T
RxK þ ðbLf

T
R þ fLb

T
RÞxD þ fLf

T
RxM : ðB:3Þ

The change occurring in the mass matrix is expressed initially as

M0 ¼ ðdLa
T
LÞKðaRd

T
RÞ � ðIþ hLa

T
LÞMðIþ aRh

T
RÞ: ðB:4Þ

Using the definitions of {xK, xD, xM} in the main text, this simplifies to

ðM0 �MÞ ¼ hLa
T
LMþMaRh

T
R þ hLh

T
RxM � dLd

T
RxK : ðB:5Þ

Using equations (16) of the main text to replace MaR and aL
T
M in equation (B.4) gives

ðM�M0Þ ¼ hLðdTRxD þ hTRxMÞ þ ðdLxD þ hLxMÞhTR � hLh
T
RxM þ dLd

T
RxK

¼ dLd
T
RxK þ ðdLh

T
R þ hLd

T
RÞxD þ hLh

T
RxM : ðB:6Þ

The change occurring in the damping matrix can be expressed as

D0 ¼ ðdLa
T
LÞKðIþ aRh

T
RÞ þ ðIþ hLa

T
LÞKðaRd

T
RÞ þ ðIþ hLa

T
LÞDðIþ aRh

T
RÞ: ðB:7Þ

Apply the definitions of {xK, xD, xM} in the main text

ðD0 �DÞ ¼ ðdLh
T
R þ hLd

T
RÞxK þ ðdLa

T
LKþ KaRd

T
RÞ þ 2xDhLh

T
R

þ ðhLa
T
LDþDaRh

T
RÞ: ðB:8Þ

Using equations (16) of the main text to replace {KaR, aL
TK, DaR, aL

TD} yields

ðD’�DÞ ¼ ðdLh
T
R þ hLd

T
RÞxK þ 2xDhLh

T
R

� ðdLðbTRxK þ fTRxDÞ þ ðbLxK þ fLxDÞdTRÞ
� ðhLðdTRxK þ ðbTR þ hTRÞxD þ fTRxMÞ þ ðdLxK þ ðbL þ hLÞxD þ fLxMÞhTRÞ;

ðB:9Þ
which simplifies to

ðD�D0Þ ¼ ðbLd
T
R þ dLb

T
RÞxK

þ ðdLf
T
R þ fLd

T
R þ bLh

T
R þ hLb

T
RÞxD þ ðfLh

T
R þ hLf

T
RÞxM : ðB:10Þ
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APPENDIX C: INVERSES OF CLASS-2 ELEMENTARY TRANSFORMATIONS

The structures of the general Class-2 elementary structure-preserving transformation
(described by the five N vectors {a, b, d, f, h}) and its inverse (described by the five N

vectors {r, s, t, u, v}) are implicitly given in equation (24) of the main text. Expansion of
this yields

rsT þ abT þ rsTabT þ rtTafT ¼ 0; ðC:1Þ

adT þ rsTadT þ rtT þ rtTahT ¼ 0; ðC:2Þ

ruT þ ruTabT þ afT þ rvTafT ¼ 0; ðC:3Þ

ruTadT þ rvT þ ahT þ rvTahT ¼ 0: ðC:4Þ

Without loss of generality, it is possible to set

r ¼ a: ðC:5Þ

From equation (C.1) to equation (C.5), the remaining unknown vectors {s, t, u, v} must be
simple linear combinations of the known vectors as

s ¼ csbbþ csf f; t ¼ ctddþ cthh; ðC:6;C:7Þ

u ¼ cubbþ cuf f; v ¼ cvddþ cvhh: ðC:8;C:9Þ

Substitute for s and u in equations (C.1) and (C.3) using equations (C.6) and (C.8) and
postmultiply the results by b and f in turn to obtain

ðbTbÞ ð1þ bTaÞ ðfTbÞ ð1þ bTaÞ ðbTbÞ ðdTaÞ ðfTbÞ ðdTaÞ
ðbTfÞ ð1þ bTaÞ ðfTfÞ ð1þ bTaÞ ðbTfÞ ðdTaÞ ðfTfÞ ðdTaÞ
ðbTbÞ ðfTaÞ ðfTbÞ ðfTaÞ ðbTbÞ ð1þ hTaÞ ðfTbÞ ð1þ hTaÞ
ðbTfÞ ðfTaÞ ðfTfÞ ðfTaÞ ðbTfÞ ð1þ hTaÞ ðfTfÞ ð1þ hTaÞ

2
66664

3
77775

csb

csf

cub

cuf

2
6664

3
7775þ

ðbTbÞ
ðbTfÞ
ðfTbÞ
ðfTfÞ

2
66664

3
77775

¼ 0: ðC:10Þ

The rank of this system of equations, reduces from 4 to 2 if there is some scalar, e, such
that

f ¼ be: ðC:11Þ

However, the equations do not become inconsistent. Neither is the solution for the inverse
any less unique for this. In the case of equation (C.11), there is a one-dimensional space of
acceptable choices for {csb, csf} but every choice within this space produces the same s

according to equation (C.6). Similarly in that case, there is a one-dimensional space of
acceptable choices for {cub, cuf} but every choice within this space produces the same u

according to equation (C.8). The equations become singular only when

ð1þ bTaÞ ð1þ hTaÞ � ðdTaÞ ðfTaÞ ¼ 0: ðC:12Þ
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Substitute for t and v in equations (C.2) and (C.4) using equations (C.7) and (C.9) and
postmultiply the results by d and h in turn to obtain

ðdTdÞ ð1þ bTaÞ ðhTdÞ ð1þ bTaÞ ðdTdÞ ðbTaÞ ðhTdÞ ðdTaÞ
ðdThÞ ð1þ bTaÞ ðhThÞ ð1þ bTaÞ ðdThÞ ðbTaÞ ðhThÞ ðdTaÞ
ðdTdÞ ðfTaÞ ðhTdÞ ðfTaÞ ðdTdÞ ð1þ fTaÞ ðhTdÞ ð1þ hTaÞ
ðdThÞ ðfTaÞ ðhThÞ ðfTaÞ ðdThÞ ð1þ fTaÞ ðhThÞ ð1þ hTaÞ

2
66664

3
77775

csb

csf

cub

cuf

2
6664

3
7775þ

ðdTdÞ
ðdThÞ
ðhTdÞ
ðhThÞ

2
66664

3
77775

¼ 0: ðC:13Þ
The rank of this system of equations reduces from 4 to 2 if there is some scalar, e, such that

d ¼ he: ðC:14Þ
Again, the equations do not become inconsistent}nor is the solution any less unique for
this. In that case, there is a one-dimensional space of acceptable choices for {ctd, cth} but
every choice within this space produces the same t according to equation (C.7). Similarly
in that case, there is a one-dimensional space of acceptable choices for {cvd, cvh} but every
choice within this space produces the same v according to equation (C.9). The equations
determining {ctd, cth, cvd, cvh} can become singular if and only if equation (C.12) applies.
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